Spectral Norm of Products of Random and Deterministic Matrices

نویسنده

  • ROMAN VERSHYNIN
چکیده

We study the spectral norm of matrices W that can be factored as W = BA, where A is a random matrix with independent mean zero entries and B is a fixed matrix. Under the (4 + ε)-th moment assumption on the entries of A, we show that the spectral norm of such an m×n matrix W is bounded by √ m + √ n, which is sharp. In other words, in regard to the spectral norm, products of random and deterministic matrices behave similarly to random matrices with independent entries. This result along with the previous work of M. Rudelson and the author implies that the smallest singular value of a random m × n matrix with i.i.d. mean zero entries and bounded (4 + ε)-th moment is bounded below by √ m− √ n− 1 with high probability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cartesian decomposition of matrices and some norm inequalities

Let ‎X be an ‎‎n-‎‎‎‎‎‎square complex matrix with the ‎Cartesian decomposition ‎‎X = A + i ‎B‎‎‎‎‎, ‎where ‎‎A ‎and ‎‎B ‎are ‎‎‎n ‎‎times n‎ ‎Hermitian ‎matrices. ‎It ‎is ‎known ‎that ‎‎$Vert X Vert_p^2 ‎leq 2(Vert A Vert_p^2 + Vert B Vert_p^2)‎‎‎$, ‎where ‎‎$‎p ‎‎geq 2‎$‎ ‎and ‎‎$‎‎Vert . Vert_p$ ‎is ‎the ‎Schatten ‎‎‎‎p-norm.‎ ‎‎ ‎‎In this paper‎, this inequality and some of its improvements ...

متن کامل

Joint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra

In this paper, we discuss some properties of joint spectral {radius(jsr)} and  generalized spectral radius(gsr)  for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but  some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...

متن کامل

THE SPECTRAL NORM OF RANDOM INNER-PRODUCT KERNEL MATRICES By

We study the spectra of p×p random matrices K with off-diagonal (i, j) entry equal to n−1/2k(XT i Xj/n ), where Xi’s are the rows of a p× n matrix with i.i.d. entries and k is a scalar function. It is known that under mild conditions, as n and p increase proportionally, the empirical spectral measure of K converges to a deterministic limit μ. We prove that if k is a polynomial and the distribut...

متن کامل

Some results on higher numerical ranges and radii of quaternion matrices

‎Let $n$ and $k$ be two positive integers‎, ‎$kleq n$ and $A$ be an $n$-square quaternion matrix‎. ‎In this paper‎, ‎some results on the $k-$numerical range of $A$ are investigated‎. ‎Moreover‎, ‎the notions of $k$-numerical radius‎, ‎right $k$-spectral radius and $k$-norm of $A$ are introduced‎, ‎and some of their algebraic properties are studied‎.

متن کامل

Spectral Properties of Random and Deterministic CMV Matrices

The CMV matrices are unitary analogues of the discrete one-dimensional Schrödinger operators. We review spectral properties of a few classes of CMV matrices and describe families of random and deterministic CMV matrices which exhibit a transition in the distribution of their eigenvalues.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008